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La0.95Mg0.05MnO3: an ideal ferromagnetic system?

J H Zhao, T Song, H P Kunkel, X Z Zhou, R M Roshko and Gwyn Williams
Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2,
Canada
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Abstract. Detailed measurements of the field- and temperature-dependent ac susceptibility and
magnetization of LaMnO3 substituted with 5 at.% of the divalent cation Mg are presented. This
system is a semiconducting ferromagnet at low temperature; in particular, analysis of these data
yields Tc = 147.2 ± 0.2 K, with critical exponents δ = 4.75 ± 0.15 (from the field dependence of
the susceptibility along the ‘crossover’ line, and confirmed by measurements along the critical
isotherm), γ + β = 1.75 ± 0.05 (from the temperature dependence of the crossover line)
and γ = 1.39 ± 0.05 (from the temperature dependence of the susceptibility along the same
line). Within experimental uncertainty these exponent values agree with those predicted by the
isotropic, three-dimensional Heisenberg model. Nevertheless this system exhibits some unusual
characteristics, specifically in the temperature dependence of the (low-) field-cooled and zero-field-
cooled magnetization. The latter have been modelled by a Preisach-based approach, which helps to
resolve a ubiquitous dilemma in the doped manganites, viz. the appearance of a technical hardness
irreconcilable with low coercive field values. A possible origin for the large, reversible component
in the response below Tc is presented.

1. Introduction

While colossal magnetoresistance (CMR) has been an established property [1] of doped
manganese perovskites since the 1950s, renewed interest in these and related systems has
arisen recently as a result of both applied and fundamental considerations [2]. Of particular
current interest in the first category is the ability to tune the doping to produce half-metallic
ferromagnets, which raises the possibility of fabricating devices based on spin—rather than
charge—transport, while in the second context these systems are regarded as examples of
strongly correlated electronic materials, in the sense of strong intra-site rather than inter-site
correlations, as estimated carrier densities lie in the range [3] 5 × 10−2–5 × 10−1 fu−1.

The doped manganese perovskites with general formula L1−xAxMnO3 (L = rare earth or
Y, A = divalent cation) correspond to the n = ∞ member of the Ruddlesden–Popper family of
compounds [4] of general formula (L,A)n+1MnnO3n+1. Reducing n progressively decouples
the perovskite layers, while for n = ∞ they are fully three dimensional, a point returned to
below. While the role of divalent cations is well established—they result in an inhomogeneous
distribution of mixed valent Mn3+–Mn4+ ions to ensure charge neutrality—a full appreciation
of their influence on both magnetic and transport properties is lacking currently. In terms
of the transport properties, for doping levels, x, typically �0.1, the conjectured emergence
of an O(2pσ )–Mn(eg) ‘band’ enables the single eg electron occupying the Mn3+ sites to
acquire a degree of itineracy; however the strong intra-site correlations amongst the Mn 3d
electrons (i.e. the strong Hund’s rule coupling) favours Mn → O → Mn hopping (so-called
double exchange) of such eg electrons between neighbouring mixed valent sites only when
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the corresponding localized t2g core spins are parallel. The latter leads to hopping/charge
transfer integrals tij ∼ t0 cos(θij /2) between an interacting pair of neighbouring Mn atoms
(labelled by sites i and j ), where θij is the angle between the corresponding core spins;
the corresponding double exchange coupling between the spins Si and Sj has the form
−J0| cos(θij /2)|SiSj . Though such an approach yields a qualitative understanding of the
increase in conductivity accompanying ferromagnetic ordering [5], and, through the field
dependence of the ordering temperature, a basic understanding of CMR, it does not yield
quantitative agreement. In essence, the scattering rate calculated within such an approach fails
to yield the correct resistivity in the paramagnetic phase. This has led to suggestions of other
processes being operative—particularly electron–lattice coupling processes, resulting not only
in the possibility of polaronic transport in the paramagnetic phase [6] (along with the presence
of both static/coherent and dynamic Jahn–Teller distortions, although these are still the subject
of ongoing investigations [7]) but also in the ferromagnetic phase [8].

To date, perhaps the best studied system is La1−xCaxMnO3, for which a complete
phase diagram is available [9]. Indeed the term ‘optimal doping’ was introduced to
characterize this system, specifically the peak in the ferromagnetic ordering temperature Tc
near x 	 0.33. Subsequently many other divalent cation substitutions near ‘optimal doping’
were effected, including relatively small cations such as Mg. The latter was [10]—along
[11] with CaCu3Mn4O12—amongst the first perovskite-like systems to be studied in which
a ferromagnetic transition does not ‘drive’ a metal–insulator phase change. Here we report
detailed measurements of the magnetic properties in the low-x region, specifically x = 0.05,
which reveal that not only does this system respond as a ferromagnet, but in many respects
it behaves as an ideal one. This system also retains semiconducting characteristics in the
ordered phase, with evidence of polaronic transport both above and below Tc, as reported
separately. The magnetic behaviour presented below contrasts with comparable levels of Ca
doping which produce a canted antiferromagnetic ground state, reminiscent of the undoped
host [12]. To date the effects of Mg substitution have received relatively little attention, and
while the comparatively small size of these ions—with attendant modifications to the Mn–O–
Mn bond angle—will likely play a significant role, the precise origin of such differences are
not currently understood.

2. Experimental details

Samples of La0.95Mg0.05MnO3 (nominal) were prepared by conventional ceramic techniques.
Stoichiometric quantities of ultra-pure La2O3, MgO (type FM) and MnO2 (99%) were mixed
for 24 hours by ball-milling in acetone. The resulting dried powder was pressed into pellet
form and heated in air at 800 ◦C for 24 hours. Such preheated samples were hand ground with
a binder (polyvinyl alcohol in water) in a mortar and pestle, granulated and pressed into a disc
shape. The latter were then sintered for 48 hours in air at 1200 ◦C. Room temperature x-ray
diffraction using Cu Kα radiation was collected from 2θ = 20 to 80◦ in steps of 0.05◦ using
an automated Philips PW 1710 system incorporating a Bragg–Brentano goniometer equipped
with incident and diffracted beam Soller slits. These data confirmed the presence of a single
phased orthorhombic structure (Pbnm) with a = 5.4907 Å, b = 5.7097 Å and c = 7.7254 Å,
i.e. c/

√
2 < a < b as expected. Furthermore there were no indications of impurity phases

above background, in particular the oxides of manganese.
Magnetic measurements were performed on a sample of approximate dimensions (0.8 ×

1.3×7) mm3. Dc magnetization and ac susceptibility data were acquired as a function of both
temperature and field in a Quantum Design PPMS model 6000 system.
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Figure 1. The field- and temperature-dependent ac susceptibility (corrected for background and
demagnetizing effects) plotted against temperature for applied fields ranging from 400 to 3000 Oe.
The inset shows the behaviour of the zero-field susceptibility.

3. Results and discussion

3.1. Susceptibility

The inset in figure 1 displays the zero-field susceptibility χ0(T ) (measured on warming at
2.4 kHz with a driving field amplitude of 30 mOe) as a function of temperature. With
decreasing temperature χ0(T ) increases rapidly as the ferromagnetic transition temperature Tc
(∼150 K) is approached from above, peaking at the Hopkinson maximum, and then decreases
monotonically as the temperature is further lowered. The Hopkinson or principal maximum is
not critical in origin—it derives from processes controlling the regular/technical contributions
in this response [13] rather than the singular contributions—and the peak susceptibility here
represents some 60% of the limit set by demagnetization constraints (estimated in figure 3), a
point discussed in more detail below. The singular component in the response is examined in
detail in the main body of figure 1. Here the ac susceptibility is plotted against temperature
in a range of superimposed static biasing fields between 400 and 3000 Oe (both the static and
the ac driving field were applied along the largest sample dimension). The effects of such
static fields are to suppress the Hopkinson maxima in both amplitude and temperature so that
secondary critical maxima can be resolved, as reported in a variety of other systems [10, 14].
As is evident in this figure, these critical maxima decrease in amplitude but shift upwards in
temperature from Tc as the static field increases, in agreement with theoretical expectations
discussed previously [15]. In particular magnetic critical exponents can be estimated directly
from such maxima rather than relying on extrapolation techniques (to zero field) implicit in
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conventional approaches. In essence, the static scaling law equation of state [16]

m(h, t) = tβF

(
h

tγ+β

)
χ(h, t) = ∂m

∂h
= t−γG

(
h

tγ+β

)
(1)

relates the (reduced) magnetization (m) to the usual linear scaling fields t = |T − Tc|/Tc
and h ∼ Hint/Tc in the vicinity of Tc, where Hint is the internal field. Utilizing the Widom
equality, γ = β(δ − 1), enables the field dependent susceptibility to be rewritten as

χ(h, t) = t−γG
(
h

tγ+β

)
= h(δ−1)/δH

(
h

tγ+β

)
(2)

where G is the derivative of the (unspecified) scaling function F with respect to its argument
(X), and H(X) = Xγ/(γ+β)G(X). From equation (2) it follows directly that the susceptibility
data acquired in fixed field (so that the prefactorh(δ−1)/δ is constant) as a function of temperature
yield the functional dependence ofH(X) directly [14] (through variations in the denominator
of X). More important, since the scaling approach is based on the premise that H(X) and the
other scaling functions exhibit a universal dependence on their argument X, then any feature
they exhibit—specifically the maxima evident in figure 1—occur at the same value of this
argument. Consequently, with tm = (Tm − Tc)/Tc representing the reduced temperature of
such maxima,

h

t
γ+β
m

= Xm tm ∝ h1/(γ+β) (3)

where Xm denotes the (constant) argument of these functions (F and G, as well as H ) at the
maxima. As a corollary [14] (as the function G(Xm) is also a constant, for a fixed argument),
then from equation (1)

χ(h, tm) ∝ h(δ−1)/δ (4)

and

χ(h, tm) ∝ t−γm . (5)

Equations (3), (4) and (5) thus allow the exponents γ , β and δ to be determined directly from
the peak structure evident in figure 1, as detailed below. Physically the line in the (H–T )
plane delineated by these maxima—the crossover line (hence the designation of (γ + β) as
the crossover exponent)—separates the ‘high’ temperature region in which the response is
thermally dominated from a lower temperature regime in which it is field dominated, as
explained qualitatively by the fluctuation–dissipation theorem [17]. Figure 2 reproduces a
double logarithmic plot of the critical peak amplitude χ(h, tm) (corrected for background and
demagnetizing effects) against the internal field Hint (Hint = Ha − NM (in conventional
notation) was found from the measured magnetization (M) and the slope,N−1, of the low field
‘shearing’ curves near Tc, figure 3). The straight line drawn in this figure, a least squares fit to
these data, confirms the power-law prediction—equation (4)—and the slope yields

δ = 4.75 ± 0.15

(400 � Hint � 3 kOe). The latter is close to the value predicted (δ = 4.80) by renormalization
group calculations for the nearest neighbour, isotropic three-dimensional Heisenberg model
[18]. In a similar manner figure 4 confirms the applicability of equation (3); the straight line,
least squares fit shown yields

γ + β = 1.75 ± 0.05

(400 � Hint � 3 kOe) in excellent agreement with Heisenberg model predictions [18].
Plots of tm of course require a value for Tc to be specified; this was done by plotting the Tm
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Figure 2. The peak/maximum susceptibility, χp = χ(h, tm) taken from data similar to those
shown in the main body of figure 1, plotted against the internal field on a double logarithmic scale.
The straight line confirms the power law prediction of equation (4) and yields a value of δ = 4.75
(±0.15).

Figure 3. Plots of the sample magnetization against the applied field for temperatures between
138 and 148 K—so-called shearing curves. The line drawn is used to estimate the demagnetization
factor.



6908 J H Zhao et al

Figure 4. A plot of the susceptibility of the peak temperature (taken from figure 1) against the
corresponding internal field on a double logarithmic scale. The straight line confirms the power
law prediction of equation (3) and yields γ + β = 1.75 (±0.05).

estimates (taken directly from data similar to those shown in figure 1) against H 1/γ+β
int , with

an extrapolation of the ensuing linear behaviour yielding an estimate for Tc. While such plots
have been made with a range of exponent values, the best fit was obtained for values close
to the predicted Heisenberg model estimates and yielded Tc = 147.2 ± 0.2 K, a value also
confirmed via figure 4. In this system Tc is closer to the Hopkinson maximum than in most
other systems studied previously, being only some 1.5 degrees higher in temperature. A further
comparison with predicted exponent values is made in figure 5, a double logarithmic plot of
the peak susceptibility χ(h, tm) (corrected for background and demagnetizing effects) against
tm; here—from the straight line, least squares fit shown—we find

γ = 1.39 ± 0.03

(tm � 2 × 10−2) compared with a model predicted value of 1.386.
While such an approach yields estimates for these exponents in a very direct manner,

figures 5 (inset) and 6 offer comparisons with conventional approaches. Figure 6 reproduces the
magnetization as a function of (internal) field along the critical isotherm (T = Tc,M ∝ H 1/δ

int );
from the line drawn on this double logarithmic plot δ is estimated as

δ = 4.80 (±0.2)

(1 kOe � Hint � 10 kOe), which agrees—uncertainties in both the estimate for Tc and the
reliability of resetting the measuring temperature to this estimate notwithstanding—with the
value deduced above from figure 2 (which is independent of the choice for Tc). The inset
in figure 5 shows the temperature dependence of the effective Kouvel–Fisher susceptibility
exponent [19] deduced directly from the zero-field susceptibility, viz.

γ ∗(t) = d(ln χ(0, t))/d ln(t).
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Figure 5. The peak/maximum susceptibility, χp = χ(h, tm) plotted against the reduced peak
temperature on a double logarithmic scale, verifying the power law of equation (5). The slope of
the line drawn yields γ = 1.39 (±0.05). The inset reproduces the temperature dependence of the
effective Kouvel–Fisher susceptibility exponent discussed in the text.

For temperatures t � 3 × 10−2, this effective exponent falls with increasing temperature from
a value of ∼1.34 towards a mean-field value of 1.0, as expected [20]. Below t ∼ 3 × 10−2 the
failure of the zero-field susceptibility to climb towards the demagnetization-factor-limited value
precludes a reliable estimate of γ ∗(t) to be found from χ(0, t) in this region, a point discussed
in more detail below. The dashed line drawn in this inset for lower temperatures connects these
γ ∗(t)data with the Heisenberg model value found above from the field-dependent susceptibility
peak data.

In summary, the magnetic critical exponent values deduced over the field and temperature
ranges indicated are completely consistent with Heisenberg model predictions, and with
expectations emanating from the fully three-dimensional characteristics of the extreme
(n = ∞) members of the Ruddlesden–Popper series. These results conflict with those reported
for some Sr-doped perovskites [21, 22] but not with measurements on a Mg-doped perovskite
with x 	 0.33 [10] and the pyrochlore system [14] Tl2Mn2O7.

The above conclusions warrant further comment, first with regard to χ0(T ) not reaching
the limit set by demagnetization constraints, and second the true, asymptotic nature of the
exponent estimates. Since the first point has been addressed in some detail previously [23], the
principal points alone are repeated here. At the demagnetization limit the internal field Hint
(= Ha − NM) is zero. In an ac measurement this requires not only that the magnetization
oscillates (reverses), but also that the amplitude of such oscillations increases as N decreases
in order to maintain this condition. Correspondingly, any process which inhibits this reversal
is more readily revealed by measurements on small N specimens (here N is close to an order
of magnitude smaller than for a sphere). The probable inhibiting mechanism here is single-ion
spin–orbit coupling at Mn3+ (Jahn–Teller) sites. The second issue concerns the approach of
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Figure 6. The sample magnetization measured along the critical isotherm plotted against the
internal field. The line drawn corresponds to δ = 4.80 (±0.2).

the present data to the critical point (h → 0, t → 0), and the true, asymptotic nature of the
exponent estimates; this requires more extensive discussion. The quoted γ value of 1.39±0.05
was extracted from data for which t � 2×10−2; while this reduced temperature is comparable
to that used in many other studies, it is still at least an order of magnitude further from the
critical point than some of the ‘best’ estimates [24] (although it should be pointed out that this
difference can be attributed, in part, to the relatively low Tc value here). By contrast the data
included in figure 2 extend down to 400 Oe, which is closer to the asymptotic limit (h → 0)
than is usual for conventional estimates for δ (critical isotherm data below 1 kOe are seldom
utilized). Nevertheless, exponent estimates based on the field and temperature variation of the
susceptibility maxima have, under the most favourable conditions [25], been extended down
to fields some three orders of magnitude smaller than those reported here, i.e. critical peak
structure has been resolved in fields of only ∼0.4 Oe. The possible origin of such differences
is next discussed.

In metallic systems the most favourable conditions referred to above have been linked
to the absence of both an orbital moment and (through spin–orbit coupling) an associated
(single-ion) anisotropy. Specifically, fitting equations (3) and (4) to experimental data and
extracting meaningful exponent values from such fits relies on the assumption that the measured
response is dominated by the singular contribution (on which such equations are based), as
indeed do more conventional approaches. An examination of previous data has revealed
that this requirement is most readily achieved in materials not only with a low net moment,
but also in which the non-critical/regular component (typically associated with domain wall
motion, coherent rotation etc) is easily saturated (viz. technical saturation is achieved in
relatively low applied fields). Since the Hopkinson maximum originates from these regular



La0.95Mg0.05MnO3 6911

Figure 7. Sample magnetization plotted against applied field at fixed temperatures of 4.2 K (top),
20 K, 40 K, 80 K, 120 K, 140 K, 160 K and 180 K (bottom).

processes it is rapidly suppressed in amplitude and temperature by modest fields in such
systems; this enables the critical maxima to be resolved, a feature identified with the onset
of the applicability of equations (3) and (4). This does not happen here. At first sight the
presence of Mn3+ ions (a Jahn–Teller ion with spin–orbit mediated anisotropy) appears to
provide a ready explanation of this result. Closer inspection however reveals difficulties
with it.

The coercive field Hc provides a direct measure of the processes opposing magnetization
reversal at any temperature. Figure 7 reproduces magnetization curves acquired for the present
system at a variety of temperatures, and figure 8 displays the temperature dependence of
the coercive field Hc(T ) deduced from the hysteresis loops. The dashed line represents
the experimental data, and the solid line represents a theoretical calculation to be discussed
later. The measured Hc(T ) falls from a value of ∼65 Oe in the liquid helium range to
zero at Tc; in particular at some 10 K below Tc measurements show Hc(T ) � 10 Oe. In
many systems studied previously [14], applied fields of typical magnitude Hc(T � Tc) have
been found to saturate the (regular) component arising from technical contributions thus
enabling critical peak structure to be resolved. This does not occur here, nor in several
other doped perovskite [10, 26, 27] and pyrochlore [14] systems studied using the present
techniques. An examination of figure 7 reveals the source of this difference; it is not the relative
magnitude of the applied field Ha and the coercive field Hc(T ) but rather the persistence of a
significant higher field slope in these magnetization curves. The latter indicates a substantial
reversible contribution to the (technical) magnetization process at fields well beyond Hc(T ).
Before discussing possible origins for such a large reversible component—and its influence
on the apparent value of the coercive field—we examine the magnetization data in more
detail.
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Figure 8. The temperature dependence of the measured coercivity Hc(T ) of La0.95Mg0.05MnO3
(dashed line) and of the coercivity calculated by the Preisach model (solid line).

3.2. Magnetization

Figure 9 shows the temperature dependence of the FC and ZFC response measured in an
applied field Ha = 10 Oe. The discrete points are the experimental data and the solid curves
are theoretical fits to be described later. The ZFC data were acquired by first cooling the sample
from T = 300 K to T = 4.2 K in zero applied field, then turning on the fieldHa = 10 Oe and
warming. The FC data were taken by cooling from T = 300 K in the applied fieldHa = 10 Oe
and then warming from T = 4.2 K. The FC and ZFC branches are identical above Tc 	 150 K,
but exhibit a strong bifurcation just below Tc, indicative of the onset of irreversibility and
hysteresis. While the FC data are relatively featureless, the ZFC response exhibits unusual
structure with increasing temperature in the form of a relatively abrupt jump near T ∼= 85 K,
followed by a weak maximum just below Tc. Within the magnetically ordered phase below
Tc, the FC and ZFC response are dominated by technical magnetization processes related to
domain wall motion and moment rotation, and the Preisach model of hysteresis provides a
formal theoretical framework for analysing and interpreting this irreversible component of the
magnetic response.

The Preisach model [28, 29] decomposes all magnetic systems into a collection of many
bistable subsystems. In the original form of the model [28], each subsystem is characterized
by a rectangular response function like that shown in figure 10(a), with two states φ = ±µ,
corresponding to the two discrete orientations of the subsystem moment µ, and two critical
instability fields (H+, H−), with H− < H+, which can be decomposed into a coercive field
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Figure 9. The temperature dependence of the field-cooled (FC) and zero-field-cooled (ZFC)
response of La0.95Mg0.05MnO3 measured in a nominal applied fieldHa = 10 Oe. The solid curves
are Preisach simulations described in the text.

Hc = (H+ − H−)/2 and an asymmetry field Hi = −(H+ + H−)/2. In more fundamental
terms, each subsystem represents an ‘elementary’ fragment of the free energy landscape,
which satisfies the minimum requirements to exhibit metastability and hysteresis. The
equivalent zero-field energy level diagram of a subsystem, shown in figure 10(b), is an
asymmetric double well potential, with two energy barriers W− = −µH− = µ(Hc + Hi)
and W+ = µH+ = µ(Hc − Hi) which inhibit transitions between the two valleys and block
moment reorientation. The coercive fieldHc functions like an intrinsic anisotropy field, which
stabilizes the two moment orientations φ = ±µ, and measures the energy dissipated as
heat in a transition [29], while the asymmetry field Hi plays the role of a local interaction
field due to neighbouring subsystems, which lifts the degeneracy of the two valleys, and
measures the energy stored in a transition [29]. The Preisach approach assumes that all such
regions have the same moment, but are distinguished from each other by their characteristic
coercive and interaction fields, which are distributed among the subsystems according to a
probability density p(Hc,Hi), which is typically assumed to be the product of two Gaussians
p(Hc,Hi) = (2πσ 2

c )
−1/2 exp[−(Hc − H̄c)2/2σ 2

c ](2πσ 2
i )

−1/2 exp[−H 2
i /2σ

2
i ]. The model has

recently been generalized [30] to include thermal overbarrier relaxation effects, which are
described by an effective thermal viscosity field H ∗

T = (kBT /µ) ln(texp/τ0) (where texp is the
experimental time constant and τ0 is a microscopic time), and critical effects related to the
existence of a critical ordering temperature Tc, by allowing the spontaneous moment µ and
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Figure 10. (a) The rectangular response function for an elementary Preisach subsystem with states
φ = ±µ, coercive fieldHc , interaction fieldHi and switching fieldsH+ andH−. (b) The zero-field
energy level diagram for the Preisach subsystem in (a). W+ andW− are the excitation energies for
transitions between the states φ = ±µ.

the Preisach distribution parameters to vary as powers of the reduced temperature (1−T/Tc) as:


µ = µ0(1 − T/Tc)-
H̄c = H̄c0(1 − T/Tc)-c
σc = σc0(1 − T/Tc)-′

c

σi = σi0(1 − T/Tc)-i



.

The parameter - plays the same role as the critical exponent β employed in the critical
analysis, although, for reasons of computational simplicity, we assume here that the power
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Table 1. Preisach model fitting parameters.

µ0 (emu) H̄c01 (Oe) σc01 (Oe) H̄c02 (Oe) σc02 (Oe) σi0 (Oe) - -c -′
c -i

1.0 × 10−13 120 60 1.2 48 12.6 0.45 0.45 0.22 0.28

Tc (K) T0 (K) Ha (Oe) M0 (emu) f / = ln(texp/τ0) λ

150 85 8.4 0.35 0.89 25 0.000 85

Figure 11. The major hysteresis loop of La0.95Mg0.05MnO3 measured at T = 4.2 K (discrete
points) and the calculated Preisach loop (solid curves) as described in the text.

law (1 − T/Tc)
- is valid for all T � Tc. The model provides explicit constructions and

elegant mathematical algorithms for replicating FC and ZFC processes and hysteresis loops,
as described in detail in the literature [30].

The solid curves in figure 9 are numerical simulations of the FC and ZFC response
generated from the extended version of the Preisach model described above, and the best
fit model parameters are listed in table 1. These same parameters were also used to generate
hysteresis loops over a wide range of temperatures T < Tc, and figure 11 shows a typical
comparison of the measured (discrete points) and calculated (solid curves) major loops at
T = 4.2 K. Estimates of the model coercive fieldHc were extracted from the loop simulations,
and figure 8 shows a comparison of the temperature dependence of the measured coercivity
(dashed line) and the coercivity predicted by the simulations (solid line). Although the number
of fitting parameters is large, several of these parameters (such as the critical temperature Tc,
the characteristic temperature T0 which defines the ‘step’ in the ZFC moment, the applied
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field Ha , the saturation moment M0 and the experimental time parameter /) are essentially
fixed by the experimental data and conditions, and are relatively inflexible. Furthermore,
many of the remaining parameters are also ‘robust’ in the sense that their influence is limited
primarily to one very particular structural feature of the experimental data, so that their values
are accordingly highly reliable.

These fits offer considerable insight into the technical magnetization processes which
characterize the LaMgMnO3 system. In particular, our analysis shows that the ‘step’ in the
ZFC moment in figure 9 in the vicinity of T0 = 85 K is a manifestation of a crossover
between two regimes with distinct anisotropy characteristics: a low temperature regime
(T < 85 K), described by a Gaussian distribution of coercive fields with a zero-temperature
mean H̄c01 = 120 Oe and a zero-temperature dispersion σc01 = 60 Oe, and a magnetically
‘softer’ high temperature regime, described by a highly truncated Gaussian (H̄c02 = 1.2 Oe,
σc02 = 48 Oe) with a true mean 〈Hc02〉true = 20 Oe which is significantly lower than H̄c01.
This crossover at T0 = 85 K is clearly visible in the temperature dependence of the calculated
coercivity in figure 8, and is coincident with a similar although somewhat weaker structural
anomaly in the measured coercivity.

The other feature of these fits which deserves special attention is the necessity to
supplement the Preisach calculation by a large reversible term, so that the total system response
is described by M = M0[(1 − f )(Preisach) ± f (1 − exp(−λ|Ha|))]. As table 1 shows, the
reversible contribution accounts for roughly 90% of the total system response (f = 0.89),
and its effects are noticeable even in the low field (Ha = 10 Oe) response in figure 9 as
a finite positive offset in the ZFC moment at T = 0. It is precisely this combination of
a large reversible component superimposed on a smaller hysteretic contribution that results
in the system appearing softer than its ‘intrinsic’ response. This can be seen directly in the
parameters of the model calculation—a zero-temperature mean coercive field H̄c01 = 120 Oe
produces a predicted coercivity of about 80 Oe when combined with the reversible contribution.
This feature accounts qualitatively—if not quantitatively—for the appearance of a technical
hardness irreconcilable with the measured low coercive field values.

A possible origin for this reversible or non-saturating regular contribution was recently
discussed [26] for La0.67Ca0.33MnO3. In the intrinsically inhomogeneous mixed valent
(Mn3+–Mn4+) state of systems of this latter type, double exchange and the associated
ferromagnetic (critical) fluctuations would predominate in those regions statistically rich
in the substituted cation, whereas other regions statistically diminished in the divalent
dopant species would be expected to display antiferromagnetic correlations characteristic of
Mn3+–Mn3+ (t2g–O(2pπ )–t2g) superexchange in the undoped parent compound. While the
former dominates the overall critical behaviour, contributions from the latter could still play a
significant role. In particular, since the uniform applied field Ha is the appropriate conjugate
field for ferromagnetic—but not antiferromagnetic—order, the incipient fluctuations associated
with the latter order would be suppressed by an increasing Ha , and as such the associated
contribution to the measured response would be reminiscent of a regular (not ferromagnetic
critical) response, as argued previously [26].

While such a model has several features which are consistent with observations, it cannot
reproduce in any direct way the anomalies observed in the ZFC and FC moments or in the
temperature dependence ofHc(T ). These data therefore cannot be used as support for models
predicting electronic phase separation in the temperature regime below Tc as have recent FC
data on La1−xCaxMnO3 exhibiting similar features, as there additional NMR measurements
played a crucial role [31]. Furthermore, while the microscopic nature of the statistically
inhomogeneous approach holds some appeal, a phenomenological macroscopic model—
consistent with the philosophy of the Preisach approach—cannot be discounted. The model
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data used in figure 9 attributes a moment of about 10−13 emu (about 3 × 106 Mn atoms)
to reversing (Barkhausen) entities involved in the hysteresis process, with roughly 107 such
entities in an average grain (typical size 40 µm). A possible macroscopic picture would thus
consist of hysteretic processes associated with moment (107 µB) reversal near the surface
of grains with large elastic (reversible) domain wall motion occurring in the main body of a
grain.

Irrespective, however, of the actual origin of the reversible component in the response, it
is the essential element complicating the behaviour of these systems.

4. Conclusions

Analysis of the measured response of the La0.95Mg0.05MnO3 system near the paramagnetic
to ferromagnetic transition temperature Tc = 147.2 ± 0.2 K yields exponent values of
γ = 1.39 ± 0.05, γ + β = 1.75 ± 0.05 and δ = 4.75 ± 0.15, consistent with Heisenberg
model predictions and the fully three-dimensional nature of this n = ∞ Ruddlesden–Popper
compound. This system—along with several other doped manganese perovskites and some
pyrochlores—also displays a large reversible component in the magnetic response at and below
Tc which complicates analysis of this critical behaviour. Possible origins for this reversible
component are discussed.
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